Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiang-Gao Meng and Anxin Wu*

Department of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail:
mengxianggao@mail.ccnu.edu.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.043$
$w R$ factor $=0.119$
Data-to-parameter ratio $=16.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Ethyl 2,5-diphenylfuran-3-carboxylate

In the title compound, $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{3}$, the dihedral between the two phenyl rings is $12.6(1)^{\circ}$. An intramolecular hydrogen bond and weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are observed.

Comment

Recently, we have reported the structure of diethyl 2,5-bis(3,4,5-trimethoxyphenyl)furan-3,4-dicarboxylate (Hu \& $\mathrm{Wu}, 2005$). In order to study the influence of the methoxy and ethyl groups on the packing of the crystal structure, we have synthesized the title compound, (I), which has an analogous molecular structure.

(I)

In the molecule, the dihedral angle between the two phenyl rings is 12.6 (1) ${ }^{\circ}$ (Fig. 1), larger than the value of $8.8(1)^{\circ}$ in the diethyl compound (Hu \& Wu, 2005). Analysis of the reported atomic coordinates using PLATON (Spek, 2003) shows that intermolecular hydrogen bonds are absent in the crystal structure of (I); however, the molecules are weakly linked together by three $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen bonds involving one Csp ${ }^{2}$ and two Csp ${ }^{3}$ atoms (Fig. 2 and Table 1).

Experimental

The title compound, (I), was synthesized according to the literature procedure of Wu et al. (1997). Single crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a methanol solution at room temperature.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{3}$
$M_{r}=292.32$
Orthorhombic, $P b c a$
$a=9.6272$ (9) \AA
$b=15.0692$ (14) \AA
$c=21.2860(19) \AA$
$V=3088.1(5) \AA^{3}$
$Z=8$
$D_{x}=1.258 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Bruker SMART Apex CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.975, T_{\text {max }}=0.992$
17087 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.119$
$S=1.03$
3375 reflections
200 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation
Cell parameters from 5225
reflections
$\theta=2.3-25.1^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, colorless $0.30 \times 0.20 \times 0.10 \mathrm{~mm}$

3375 independent reflections 2544 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=27.0^{\circ}$
$h=-10 \rightarrow 12$
$k=-19 \rightarrow 18$
$l=-22 \rightarrow 27$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0561 P)^{2}\right. \\
& \quad+0.433 P] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.20 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }= \\
& -0.16 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
$C g 1$ and Cg2 are the centroids of the C1-C6 phenyl and furan rings, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C5-H5 $\cdots \mathrm{O} 2$	0.93	2.17	$3.001(2)$	148
C13-H13 CCg1		0.93	3.26	$3.981(1)$
C18-H18B \cdots Cg1	136			
C19-H19C $\cdots 2^{\mathrm{ii}}$	0.97	3.01	$3.837(1)$	144

Symmetry codes: (i) $-x+2, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $x-\frac{1}{2},-y+\frac{1}{2},-z+1$.
All H atoms were placed at their idealized positions (methyl $\mathrm{C}-\mathrm{H}$ $=0.96 \AA$, methylene $\mathrm{C}-\mathrm{H}=0.97 \AA$ and aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$) and included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for methylene and aromatic H atoms.

Data collection: SMART (Bruker, 2001); cell refinement: SAINTPlus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

The authors are grateful to the Central China Normal University, the National Natural Science Foundation of China (grant No. 20472022) and the Hubei Province Natural Science Fund (grant Nos. 2004ABA085 and 2004ABC002) for financial support.

Figure 1
The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Figure 2
The linkage of the molecules by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (dashed lines) [symmetry codes: (a) $2-x,-\frac{1}{2}+y, \frac{1}{2}-z ;(b)-\frac{1}{2}+x, \frac{1}{2}-y, 1-z$].

References

Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.
Hu, S.-L. \& Wu, A.-X. (2005). Acta Cryst. E61, o2030-o2032.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Wu, A., Wang, M. \& Pan, X. (1997). Synth. Commun. 12, 2087-2091.

